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Abstract 

For higher order Multiple Input Multiple Output (MIMO) 

networks with and without Zero Forcing (ZF) technique, we 

consider the problem of sum rate maximization. The aim is to 

maximize the achievable communication sum rate by 

formulating the user dependent MIMO channel matrix. To 

obtain a quality to the existing non-convex problem, we devise 

a method based on convex optimization by applying the 

negative sum rate of the non-convex optimization. Furthermore, 

to obtain the optimal power allocation channel coefficients, the 

KKT condition is applied. Simulations are performed for 4 × 4, 

8 × 8, 16 × 16, 32 × 32, 64 × 64, 128 × 128 and 256 × 256 MIMO 

systems. Simulation results prove that ZF technique performs 

better at higher power levels. 

Introduction 

On the efficient radio resource allocation schemes, several 

works have already been carried out for 5G wireless 

communication systems. To attain much higher data throughput 

and improved spectral efficiency without the requirement for 

increased bandwidth and redundant base stations, the non-

orthogonal multiple access (NOMA), multiple input and 

multiple output and relaying technologies have been discussed 

in [1]. Considering the typical indoor environment, cooperative 

and coordinated multi-cell resource allocation methods for 5G 

ultra reliable low latency connection, has been presented by the 

authors in [2]. Moreover for 5G networks with application to 

device to device (D2D) and machine to machine (M2M) 

communications various other resource allocation schemes have 

been presented in [3–5]. Efficient resource allocation for MIMO 

and OFDM in 5G is a non-convex optimization problem [6]. 

Using the convex optimization routine in MATLAB, by 

considering the negative sum rate of the optimization objective 

function a less complex closely approaching optimal solution 

for such problems can be obtained. 

Problem Description 

For the 5G wireless communication systems, the promising 

technologies are Massive MIMO, cooperative communication, 

etc. To efficiently allocate the channel resources and to support 

the spectrum reuse, at both the base station and the mobile 

station, a large array of high directive/gain antennas are 

employed, multiplexed spatially for highly directed beam-

forming in massive MIMO. The resource allocation scheme 

does not guarantee the optimal solution of the problem for 

MIMO and OFDM based wireless system architectures as the 

resource allocation scheme here is a non-convex optimization 

problem. In this section, for obtaining the solution of the non-

convex optimization problems we introduce a duality 

counterpart by minimizing the negative sum rate of the objective 

function. By minimizing the objective function or cost function 

subject to certain real-time constraints (inequality or equality 

constraints) the optimal solutions for all the convex optimization 

problems related to judicious allocation of network resources 

can be obtained. The convex optimization techniques form the 

basis for the efficient resource allocation like spectrum reuse, 

energy efficiency, bit error rates, etc. 
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Problem Solution 

We formulate analytically and mathematically the various 

optimization parameters like optimal MIMO-OFDM power 

allocation, OFDM rate optimization, MIMO rate optimization 

[7, 8] and optimization problems related to effect of multiple 

antennas in cooperative communication for optimum resource 

allocation in MIMO and multicarrier (OFDM, FBMC) based 5G 

wireless communication systems. We first introduce the concept 

of typical convex optimization problem in this section and then 

using the convex optimization approach and LaGrange’s 

function we will analyse various optimization parameters. Note 

that the number of Lagrangian coefficients is always equal to 

number of the constraints. 

Convex Function and Convex Optimization 

If the domain of the optimization function 𝑔(𝑥) is a convex set, 

i.e., 𝑥, 𝑦 ∈ dom 𝑔, the function 𝑔(𝑥) is a convex function 

satisfying the following inequality: 

 

𝑔(𝛼𝑥 +  (1 −  𝛼)𝑦) ≤  𝛼𝑔(𝑥) +  (1 −  𝛼)𝑔(𝑦); 

 0 ≤  𝛼 ≤ 1                                                            (1) 

Any convex optimization problem will have the form 

Minimize 𝑔0(𝑥) 

Subject to 𝑔𝑖(𝑥) ≤  0, 𝑖 =  1, 2, . . . , 𝑚 

ℎ𝑖(𝑥) = 0, 𝑖 =  1, 2, . . . , 𝑛                         (2) 

This describes a convex optimization problem for finding the 

values of the variable 𝑥 that minimizes 𝑔0(𝑥)∀𝑥 satisfying the 

constraints 𝑔𝑖(𝑥) ≤  0, 𝑖 =  1, 2, . . . , 𝑚 and   ℎ𝑖(𝑥) = 0, 𝑖 =

 1, 2, . . . , 𝑛. The variable 𝑥 ∈  𝑅𝑛 is termed as the optimization 

variable and the function 𝑔0 ∶  𝑅𝑛  →  𝑅 the cost function or 

optimization function. The inequalities 𝑔𝑖(𝑥) ≤  0 are inequality 

constraints corresponding to inequality constraints functions𝑔𝑖 ∶

 𝑅𝑛  →  𝑅. The equality constraint ℎ𝑖(𝑥) = 0 corresponds to the 

equality constraint functions ℎ𝑖 ∶  𝑅𝑛  →  𝑅. The optimization 

problem is called unconstrained if there are no constraints,. 

Graphically a convex function represents a chord passing 

through two points (𝑥, 𝑔(𝑥)) and (𝑦, 𝑔(𝑦)) from 𝑥 to y. An 

optimization function g is strictly convex, if strict inequality 

holds i.e. whenever 𝑥 ≠  𝑦 and 0 ≤  𝛼 ≤  1. If 𝑔 is concave 

then −𝑔 is convex and 𝑔 is strictly concave if −𝑔 is strictly 

convex. This is a generalized fact that an optimization functions 

like a MIMO rate optimization function, OFDM rate 

optimization function, optimal MIMO-OFDM power allocation 

functions and optimization problems related to effect of multiple 

antennas in cooperative communication are concave 

optimization problems but the negative sum rate of these 

functions are convex functions. The convex optimization 

techniques can now be employed to obtain the optimal values of 

the said functions. 

System Model for MIMO Rate Optimization 

We consider a standard MIMO system consisting of ‘𝑡’ transmit 

antennas at the base station side and ‘𝑟’ decentralized receive 

antennas. The MIMO channel can be equivalently modelled as: 

𝑌̅ =  𝐻𝑋̅ + 𝑁.                                            (3) 

where 𝑌̅ = [𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑟] is the ‘𝑟’ dimensional receive 

vector at the MIMO receiver, 𝑋̅ = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡] is a ‘𝑡’ 

dimensional transmit vector with each symbol transmitted 

through each transmit antenna [9]. 𝐻̅ = [ℎ1, ℎ2, ℎ3, … , ℎ𝑟𝑡] is the 

𝑟 ×  𝑡 channel coefficient vector and 𝑁 = [𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑟] is 

the ‘𝑟’ dimensional noise vector. The subscripts to the 

parameters 𝑦, 𝑥, ℎ, 𝑛 corresponds to the antenna numbers at 

transmit and receive sides of the MIMO channel. 

The MIMO system introduced represents the parallelization of 

the MIMO channel with ‘𝑡’ symbols transmitted in parallel and 

spatially multiplexed. The signal power received at the receiver 

corresponding to each MIMO channel is given as 

𝜎𝑖
2{𝐸|𝑋̅|2}                                                  (4) 

where 𝜎𝑖 represents the singular values of the channel 

coefficient matrix 𝐻̅ [10] of the MIMO channel. The SVD of 𝐻̅ 

is given below 

𝐻 = 𝑈 ∑ 𝑉𝐻                                                (5) 
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where the matrices 𝑈, ∑ 𝑉are 𝑟 ×  𝑡, 𝑡 ×  𝑡 and 𝑡 ×  𝑡 

dimensional respectively [11]. The noise power received at the 

receiver corresponding to each MIMO channel is given by 𝜎𝑛
2 

computed as the value of the covariance of the noise matrix. 

Therefore the signal to noise ratio at the input of the receiver is 

given as 

𝑆𝑁𝑅 =
𝜎𝑖

2{𝐸|𝑋̅|2}     

𝜎𝑛
2                                       (6) 

From the above SNR expression for the 𝑖𝑡ℎ channel, the 

Shannon capacity 𝐶𝑖 of the channel can be derived as given 

below 

𝐶𝑖 = log2 (1 +
𝑃𝑖𝜎𝑖

2

𝜎𝑛
2 )                                 (7) 

The optimal MIMO power allocation problem can now be 

formulated as 

Maximize ∑ log2 (1 +
𝑃𝑖𝜎𝑖

2

𝜎𝑛
2 ) 𝑡

𝑖=1 .               (8) 

Subject to ∑ 𝑃𝑖 ≤ 𝑃 𝑡
𝑖=1                               (9) 

where 𝑃 is the total transmit power. 

The above optimization problem with the given inequality 

constraint is a non-convex optimization problem and hence the 

convex optimization techniques cannot be applied directly to 

obtain the optimal solution for the MIMO power allocation 

problem. A non-convex optimization problem is transformed 

into a convex optimization problem by taking the negative sum 

rate of the non-convex optimization expression. The optimal 

MIMO power allocation problem can further be modified and 

formulated as a convex optimization problem by taking the 

negative sum rate of ∑ log2 (1 +
𝑃𝑖𝜎𝑖

2

𝜎𝑛
2 ) 𝑡

𝑖=1  as under 

Minimize. − ∑ log2 (1 +
𝑃𝑖𝜎𝑖

2

𝜎𝑛
2 ) 𝑡

𝑖=1           (10) 

Subject to ∑ 𝑃𝑖 ≤ 𝑃 𝑡
𝑖=1                            (11) 

To solve the above convex optimization problem a series of 

steps are followed as under: 

 

Step1: Finding the Lagrangian cost function 𝒇(𝑷̅, 𝝁) 

It is important to note that the number of Lagrangian multiples 

is equal to the number of constraints- inequality of equality 

constraints. The Lagrangian cost function 𝑓(𝑃̅, 𝜇) for the given 

optimization problem can be formulated as under 

𝑓(𝑃̅, 𝜇) =  ∑ log2 (1 +
𝑃𝑖𝜎𝑖

2

𝜎𝑛
2 ) 𝑡

𝑖=1 + 𝜇(𝑃 − ∑ 𝑃𝑖
𝑡
𝑖=1 )                                        

(12) 

 

Step2: Finding the maxima of the Lagrangian cost 

function. 

Differentiating the above obtained Lagrangian cost function 

𝑓(𝑃̅, 𝜇) with respect to power associated with the 𝑖𝑡ℎ MIMO 

channel 𝑃𝑖 and setting the result equal to 0, we get 

𝜕

𝜕𝑥
𝑓(𝑃̅, 𝜇) = 0                                         (13) 

⇒

𝜎𝑖
2 

𝜎𝑛
2  

1+
𝑃𝑖𝜎𝑖

2

𝜎𝑛
2

− 𝜇 = 0                                   (14) 

Step3: Finding the optimal Pi using KKT conditions 

The Kurush Kuhn Tucker (KKT) conditions states that if 

𝜕

𝜕𝑥
𝑓(𝑃̅, 𝜇) = 0 then there exist local minima 𝑃∗ for a unique 

value of the Lagrangian multiple 𝜇 as 𝜇∗ subject to 𝜇∗  ≥  0. 

Solving the above differential equation 
𝜕

𝜕𝑥
𝑓(𝑃̅, 𝜇) = 0 yields 

𝜎𝑖
2 

𝜎𝑛
2  

1+
𝑃𝑖𝜎𝑖

2

𝜎𝑛
2

− 𝜇 = 0                                        (15) 

⇒  
𝜎𝑖

2 

𝜎𝑛
2 

1

𝜇
= 1 +

𝑃𝑖𝜎𝑖
2

𝜎𝑛
2                                   (16) 

⇒ 𝑃𝑖 = (
1

𝜇
−

𝜎𝑛
2 

𝜎𝑖
2 

)
+

                            (17) 

𝑃𝑖 represents the power associated with the ith MIMO channel, 

the function (
1

𝜇
−

𝜎𝑛
2  

𝜎𝑖
2 

)
+

always accounts for the positive value of 

the channel powers, because channel powers cannot be negative. 
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𝑃𝑖 = (
1

𝜇
−

𝜎𝑛
2  

𝜎𝑖
2 

)
+

is positive if 
1

𝜇
≥

𝜎𝑛
2 

𝜎𝑖
2 

 and 0 otherwise.  𝑃𝑖 Can 

now be formulated as a piecewise optimization function as 

under 

𝑃𝑖 = {
1

𝜇
−

𝜎𝑛
2 

𝜎𝑖
2 

,   𝑥 ≥ 0

0,             𝑥 < 0
                              (18) 

Step4: Finding the Lagrangian multiplier ‘𝝁’ for 

optimal 𝑷𝒊. 

The power allocated to the 𝑖𝑡ℎ MIMO channel is directly 

dependent on user defined function 𝜎𝑖
2. Increasing the 𝜎𝑖 will 

increase the power allocated to the 𝑖𝑡ℎ MIMO channel 

coefficient. Thus the resulting power allocation will result in the 

water filling phenomenon subject to the constraint ∑ 𝑃𝑖 ≤ 𝑃 𝑡
𝑖=1 . 

Employing the same constraint will yield the value of ‘𝜇’ for 

optimal power allocation to the 𝑖𝑡ℎ MIMO channel. 

𝑃𝑖 = (
1

𝜇
−

𝜎𝑛
2  

𝜎𝑖
2 

),   ∀
1

𝜇
≥

𝜎𝑛
2 

𝜎𝑖
2 

                       (19) 

Solving the above expression for ‘𝜇’ we get 

𝜇 =
𝜎𝑖

2

𝑃𝑖𝜎𝑖
2+𝜎𝑛

2                                              (20) 

For optimal 𝑃𝑖, the Lagrangian multiplier ‘𝜇’ should be 

minimum subject to the condition  ∑ 𝑃𝑖𝜎𝑖 ≤ 𝑃 𝑡
𝑖=1 . 

Results and Discussions 

The figures from 1–7 represents the capacity (Mbps) associated 

with the 𝑖𝑡ℎ MIMO channel as a function of the corresponding 

power of the same channel with Zero-Padding (ZP) and with 
Cyclic-Prefix (CP). 

Figure 1 shows capacity (Mbps) versus Power (dB) graph with 

ZP technique and with CP for 4 × 4MIMO system. The figure 

clearly reveals that with ZP and CP technique capacity increases 

with the increase in power, resulting in water filling 

phenomenon. It is observed that as the power increases from 5 

to 60 dB capacity increases to 45 Mbps.  

 

 
Fig. 1 Capacity (Mbps) versus power (dB) for 4 × 4 MIMO systems 

 

Figure 2 shows capacity (Mbps) versus Power (dB) graph with 

ZP technique and with CP for 8×8 MIMO system. The figure 
reveals that at low power (<5 db) there is no improvement in 

capacity using ZP technique. However after 5 dB power level 

ZP technique shows an improvement in capacity enhancement, 

again resulting in water filling phenomenon. At 10 dB there is 

an overall increase in capacity in both ZP and CP. 

 
Fig. 2 Capacity (Mbps) versus power (dB) for 8 × 8 MIMO systems 

 

 
Fig. 3 Capacity (Mbps) versus power (dB) for 16 × 16 MIMO systems 

 

 
Fig. 4 Capacity (Mbps) versus power (dB) for 32 × 32 MIMO systems 

 

http://www.jetir.org/


© 2020 JETIR November 2020, Volume 7, Issue 11                                                         www.jetir.org (ISSN-2349-5162) 

JETIR2011214 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 589 
 

 
Fig. 5 Capacity (Mbps) versus power (dB) for 64 × 64 MIMO systems 

 
Fig. 6 Capacity (Mbps) versus power (dB) for 128 × 128 MIMO 

systems 

 

 
Fig. 7 Capacity (Mbps) versus power (dB) for 256 × 256 MIMO 

systems 

 
Figure 3 shows capacity (Mbps) versus Power (dB) graph with 

ZP technique and with CP for 16 × 16 MIMO system. The 

Figure reveals that at low values of power the performances of 

CP technique deteriorates as compared to ZP technique. After 

15 db power level CP technique again performs better than ZP 

technique. Thus massive MIMO systems will perform better at 

higher power levels where SINR values will be optimal. This is 

again shown in Fig. 4 where we again plot capacity vs. power 

for 32 × 32 MIMO system. ZP technique performs almost closer 

to that of CP technique after 20 dB power levels. Same is the 

case in 64 × 64 MIMO System and when we further increase the 

MIMO order, the graph for capacity vs. power coincides for both 
CP and ZP technique after 25 dB. Thus ZP technique will 

definitely perform better when MIMO order is further increased. 

 

Conclusion 

 

To evaluate the performance of proposed ZP technique using 
convex optimization method a number of iterations has been 

done in this paper. The iteration method was based on applying 

negative sum rate of non-convex optimization. Via CVX 

toolbox the sum rate maximization of proposed ZF technique is 

dealt. As depicted from our plots in the proposed technique the 

optimal values for power allocation coefficient and Lagrangian 

coefficient obtained result in water filling phenomenon. 

Compared to CP technique, at higher power levels for higher 

MIMO order configurations the proposed ZP technique 
performs better due to lesser interference and noise limited 

environment. 
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